Heat Kernel Laplace-Beltrami Operator on Digital Surfaces
نویسندگان
چکیده
Many problems in image analysis, digital processing and shape optimization can be expressed as variational problems involving the discretization of the Laplace-Beltrami operator. Such discretizations have have been widely studied for meshes or polyhedral surfaces. On digital surfaces, direct applications of classical operators are usually not satisfactory (lack of multigrid convergence, lack of precision. . . ). In this paper, we first evaluate previous alternatives and propose a new digital Laplace-Beltrami operator showing interesting properties. This new operator adapts Belkin et al. [1] to digital surfaces embedded in 3D. The core of the method relies on an accurate estimation of measures associated to digital surface elements. We experimentally evaluate the interest of this operator for digital geometry processing tasks.
منابع مشابه
Discrete heat kernel determines discrete Riemannian metric
The Laplace-Beltrami operator of a smooth Riemannian manifold is determined by the Riemannian metric. Conversely, the heat kernel constructed from the eigenvalues and eigenfunctions of the Laplace-Beltrami operator determines the Riemannian metric. This work proves the analogy on Euclidean polyhedral surfaces (triangle meshes), that the discrete heat kernel and the discrete Riemannian metric (u...
متن کاملGeneralized Heat Kernel Signatures
In this work we propose a generalization of the Heat Kernel Signature (HKS). The HKS is a point signature derived from the heat kernel of the Laplace-Beltrami operator of a surface. In the theory of exterior calculus on a Riemannian manifold, the Laplace-Beltrami operator of a surface is a special case of the Hodge Laplacian which acts on r-forms, i. e. the Hodge Laplacian on 0-forms (functions...
متن کاملHeat Kernel Smoothing of Anatomical Manifolds via Laplace-Beltrami Eigenfunctions Submitted to IEEE Transactions on Medical Imaging
We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic diffusion equation on a manifold is analytically represented using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions. Unlike many previous ...
متن کاملA remark on the Gaussian lower bound for the Neumann heat kernel of the Laplace-Beltrami operator
We adapt in the present note the perturbation method introduced in [3] to get a lower Gaussian bound for the Neumann heat kernel of the Laplace-Beltrami operator on an open subset of a compact Riemannian manifold.
متن کاملHeat Kernel Smoothing of Anatomical Manifolds via Laplace-Beltrami Eigenfunctions
We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic diffusion equation on a manifold is analytically represented using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions. Unlike many previous ...
متن کامل